View Single Post
  #1  
Old October 17th 20, 03:55 AM posted to rec.aviation.soaring
Kenn Sebesta
external usenet poster
 
Posts: 48
Default Wheel brake effectiveness standards

Does anyone have any data, preferably quantitative, about what sort of braking performance is required? On the one hand, it would seem that effective braking is primordial for safe landing in the event of an outlanding, but on the other hand many gliders seem to have inadequate brakes, to put it charitably. And these brakes oftentimes are not easily actuated, for instance in a B-4 or L-23 where squeezing the wheel brake handle requires releasing the air brake. So it's fair to conclude that brake performance is (or was) a very distant thought.

I've looked through CS-22, but there are no given standards for wheel brakes, only a loose admonition that "If the main landing gear consists only of one or more wheels, the sailplane must be equipped with mechanical braking devices, such as wheel brakes."

In particular, I'm trying to calculate how much energy the brakes need to absorb. An easy analysis is simply calculating the kinetic energy of the plane when landing 5kts faster than stall (since it's hard to glue the plane to the ground when going much faster). However, this grossly underestimates the amount of energy dissipated through rolling and air resistance. It also doesn't account for what might occur if brake forces were so high that the plane tips forward and skids on its nose.

Still, since the consequence of underspeccing the brakes is brake fade and glazing, and the consequence of overspeccing is additional weight and cost, it's worth trying to right-size the system.

Does anyone have any domain specific experience they could share?