![]() |
If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below. |
|
|
Thread Tools | Display Modes |
#1
|
|||
|
|||
![]() http://en.wikipedia.org/wiki/Airbus_A380 Avionics architecture The A380 employs an Integrated Modular Avionics (IMA) architecture, first used in advanced military aircraft such as the F-22 Raptor and the Eurofighter Typhoon. It is based on a commercial off-the-shelf (COTS) design. Many previous dedicated single-purpose avionics computers are replaced by dedicated software housed in onboard processor modules and servers. This cuts the number of parts, provides increased flexibility without resorting to customised avionics, and reduces costs by using commercially available computing power.[25] Together with IMA, the A380 avionics are very highly networked. The data communication networks use Avionics Full-Duplex Switched Ethernet, following the ARINC 664 standard. The data networks are switched full-duplexed star-topology and based on 100baseTX fast-Ethernet. This reduces the amount of wiring required and minimizes latency. [29] The Network Systems Server (NSS) is the heart of A380 paperless cockpit. It eliminates the bulky manuals and charts traditionally carried by the pilots. The NSS has enough inbuilt robustness to do away with onboard backup paper documents. The A380's network and server system stores data and offers electronic documentation, providing a required equipment list, navigation charts, performance calculations, and an aircraft logbook. All are accessible to the pilot from two additional 27 cm (11 inch) diagonal LCDs, each controlled by its own keyboard and control cursor device mounted in the foldable table in front of each pilot.[29] [edit] Systems Power-by-wire flight control actuators are used for the first time in civil service, backing up the primary hydraulic flight control actuators. During certain manoeuvres, they augment the primary actuators. They have self-contained hydraulic and electrical power supplies. They are used as electro-hydrostatic actuators (EHA) in the aileron and elevator, and as electrical backup hydrostatic actuators (EBHA) for the rudder and some spoilers.[30] The aircraft's 350 bar (35 MPa or 5,000 psi) hydraulic system is an improvement over the typical 210 bar (21 MPa or 3,000 psi) system found in other commercial aircraft since the 1940s. First used in military aircraft, higher pressure hydraulics reduce the size of pipelines, actuators and other components for overall weight reduction. The 350 bar pressure is generated by eight de-clutchable hydraulic pumps. Pipelines are typically made from titanium and the system features both fuel and air-cooled heat exchangers. The hydraulics system architecture also differs significantly from other airliners. Self-contained electrically powered hydraulic power packs, instead of a secondary hydraulic system, are the backups for the primary systems. This saves weight and reduces maintenance. The A380 uses four 150 kVA variable-frequency electrical generators eliminating the constant speed drives for better reliability. The A380 uses aluminium power cables instead of copper for greater weight savings due to the number of cables used for an aircraft of this size and complexity. The electrical power system is fully computerized and many contactors and breakers have been replaced by solid-state devices for better performance and increased reliability.[30] The A380 features a bulbless illumination system. LEDs are employed in the cabin, cockpit, cargo and other fuselage areas. The cabin lighting features programmable multi-spectral LEDs capable of creating a cabin ambience simulating daylight, night or shades in between. On the outside of the aircraft, HID lighting is used to give brighter, whiter and better quality illumination. These two technologies provide brightness and a service life superior to traditional incandescent light bulbs. The A380 was initially planned without thrust reversers, as Airbus believed it to have ample braking capacity. The FAA disagreed, and Airbus elected to fit only the two inboard engines with them. The two outboard engines do not have reversers, reducing the amount of debris blown up during landing. The A380 features electrically actuated thrust reversers, giving them better reliability than their pneumatic or hydraulic equivalents, in addition to saving weight. |
Thread Tools | |
Display Modes | |
|
|
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
American nazi pond scum, version two | bushite kills bushite | Naval Aviation | 0 | December 21st 04 10:46 PM |
Hey! What fun!! Let's let them kill ourselves!!! | [email protected] | Naval Aviation | 2 | December 17th 04 09:45 PM |
Did the Germans have the Norden bombsight? | Cub Driver | Military Aviation | 106 | May 12th 04 07:18 AM |
bulding a kitplane maybe Van's RV9A --- a good idea ????? | Flightdeck | Home Built | 10 | September 9th 03 07:20 PM |