![]() |
If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below. |
|
|
Thread Tools | Display Modes |
#1
|
|||
|
|||
![]()
Through the contributions to the avoiding VNE thread
runs the theme of the difficulty of avoiding overspeeding and/or overstressing some modern designs in accidental spin recovery. This is made more difficult than in older composite gliders because they had a little more drag and a little more (fortuitous) margin in the g limits. Is it not blindingly obvious that there is a need for an emergency drag device that does not reduce the G limits of gliders? Clearly if we all handled the recovery from inadvertent spins etc perfectly all would be well but equally clearly that does not always happen and it is a shame to lose pilots in this situation. As the Phoebus pilot pointed out a tail chute is ideal for this - providing that it can be made to actuate and jettison reliably. (I found the design used on the Kestrel particularly good and I never once had a failure for landing use) On the other hand they are expensive and inconvenient to replace and there are several ways that they can fail. So can anyone think of a better idea than a chute? The best I can come up with is some sort of flush fitted rectangular-with the-long-edge-horizontal rear hinged airbrakes (like old fashioned automobile suicide doors) located on the fuselge sides somewhere in the region below or below/behind the wings. If they opened to about 45 degrees with a spring actuator (and limited by sliding metal stays that hinge/attach to the front of the panel and whose inner ends slid along in runners) then they would provide a lot of drag without any deep internal mechanism (such as wing airbrakes have). Once they have done their job the rear end of the brakes could be released by a spring loaded mechanism similar to the front end so that the brakes would then instantly spring to as position set out from and parallel to the fuselage so that there would be very little drag - only that provided by the stays at both ends and the brake panels edge on to the wind. That configuration would be good enough to fly home with. It would only be possible to reset these brakes on the ground and they would not replace conventional wing airbrakes for approach control - although they could have a secondary use for emergency approach control. I am envisaging something the could be included in new designs although there does not seem to be any obvious reason why such a device could not be retrofitted as a fairly major modification. The contours of the brake panels would be specific to the individual fuselage type but the mechanism could be generic. The assembly would be fairly shallow and complete within itself apart from e.g. a cable release attachment. I am not advocating a technical solution to this problem in place of spin recovery practice but I do think that there must be something that the combined intellects of the gliding community can come up with other than observing that if we get into that particular overspeeding/steep attitude condition we are stuffed. Anyone got any simpler or better ideas? I am definitely not an engineer. John Galloway |
Thread Tools | |
Display Modes | |
|
|
![]() |
||||
Thread | Thread Starter | Forum | Replies | Last Post |
Aircraft Deceleration Devices | SteveM8597 | Military Aviation | 10 | April 13th 04 10:01 AM |
GPS and Night Vision Devices | Steve | Products | 0 | February 12th 04 11:34 AM |
WinPilot-compatible GPS devices | Ted Wagner | Soaring | 21 | January 12th 04 10:27 AM |
PC flight simulators | Bjørnar Bolsøy | Military Aviation | 178 | December 14th 03 12:14 PM |
Airdropped Fusion Devices | Blinky the Shark | Military Aviation | 4 | September 17th 03 05:34 PM |