A aviation & planes forum. AviationBanter

If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below.

Go Back   Home » AviationBanter forum » rec.aviation newsgroups » Piloting
Site Map Home Register Authors List Search Today's Posts Mark Forums Read Web Partners

So...about that plane on the treadmill...



 
 
Thread Tools Display Modes
Prev Previous Post   Next Post Next
  #11  
Old December 13th 06, 06:05 AM posted to rec.aviation.piloting
Travis Marlatte
external usenet poster
 
Posts: 233
Default So...about that plane on the treadmill...

"Darkwing" theducksmailATyahoo.com wrote in message
...

"John T" wrote in message
...
"Darkwing" theducksmail"AT"yahoo.com wrote in message


First, the question posed in the link by the OP of this thread is an
incorrect variation of the original. The original problem asks: "A plane
is standing on a giant treadmill. The plane moves in one direction, while
the treadmill moves in the opposite direction and at the same speed as
the plane. Can the plane take off?"

As has been explained, placing a car on the question's treadmill would
result in a stationary vehicle relative to the observer standing beside
the treadmill. The reason is the car derives its propulsion through the
wheels sitting on the treadmill and the speed of the car is measured by
how fast the wheels are turning. The faster the wheels turn, the "faster"
the car moves. However, this is only relative to the treadmill belt. To
the observer standing beside the treadmill, the car is motionless. If the
driver placed his hand out the window, he would feel no wind even though
his "speed" as indicated by the speedometer may be 100 miles per hour.


Hmm. That presumes that "at the same speed as the plane" means "as fast as
necessary to cancel the forward motion." If you take your car analogy and
apply it to the plane, then the treadmill must try to run backwards as fast
as necessary to cancel forward motion - which is, Ah, let's just say
difficult.

To be consistent with your conclusions about the plane's motion, then the
car would also move. Using the object's motion as the defining parameter to
determine the treadmill speed, then a stable state can be reached with
either
1) a plane with forward motion X, treadmill with motion -X, wheels
spinning at 2X, thrust applied to achieve speed X
2) a car with forward motion X, treadmill with motion -X, wheels
spinning at 2X, thrust applied to achieve speed 2X

Accelerate either the plane or the car with X from 0 to, say, 65. The plane
will take off. The car will drive off the end of the treadmill.

John T



Thank you for your reply. Here is my .02, it would seem that the plane
never actually moves in respect to the observer no matter how fast the
treadmill moves, the plane will just take off like it is hovering and then
slowly accelerate away?

I guess I'll have to set this up and try it, I do have a few RC planes
laying around and I have a treadmill so I guess I'll know one way or
another, unless Mythbusters beats me to the punch.

-------------------------------------------------------
DW


DW,

None of the people that believe the plane will fly say that it will fly with
no forward motion. The claim is that the plane will accelerate to flying
speed in spite of the treadmill moving in the opposite direction.


 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
VQ-1's P4M-1Q crash off China - 1956 Mike Naval Aviation 0 May 6th 06 11:13 PM
Passenger crash-lands plane after pilot suffers heart attack R.L. Piloting 7 May 7th 05 11:17 PM
rec.aviation.aerobatics FAQ Dr. Guenther Eichhorn Aerobatics 0 May 1st 04 08:27 AM
rec.aviation.aerobatics FAQ Dr. Guenther Eichhorn Aerobatics 0 April 1st 04 08:27 AM


All times are GMT +1. The time now is 11:14 AM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright ©2004-2025 AviationBanter.
The comments are property of their posters.