A aviation & planes forum. AviationBanter

If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below.

Go Back   Home » AviationBanter forum » rec.aviation newsgroups » Piloting
Site Map Home Register Authors List Search Today's Posts Mark Forums Read Web Partners

Increasing power required with altitude.. what's a good plain english explanation?



 
 
Thread Tools Display Modes
Prev Previous Post   Next Post Next
  #22  
Old February 5th 07, 07:35 PM posted to rec.aviation.piloting
Orval Fairbairn
external usenet poster
 
Posts: 824
Default Increasing power required with altitude.. what's a good plain english explanation?

In article ,
"Danny Deger" wrote:

"xerj" wrote in message
...
No, same IAS, same drag, same thrust, same power requirement from the
engine to generate the thrust. The statement that power is drag time
velocity is incorrect. That is the point where the error is made.


All of the definitions of power that I have seen have been along the lines
of P = T * V, or something that equates to that.

For instance:-

"The formula for Thrust Horsepower (THP) is:
THP = D x V"

from http://selair.selkirk.bc.ca/aerodyna...nce/Page4.html.

That is wrong?


You can certainly define a term called Thrust Horse Power as thrust x
velocity. And this link definition of Brake Horse Power is correct (torque
times RPM). But there is no reason to think these terms are equal in an
aircraft. A great deal of the power out of the engine (all of the power if
in steady state level flight) goes into the air and not the airframe. It is
my understanding that for a given thrust at a given IAS (actually Equivelant
Air Speed, EAS, is the better term), the engine power requirement is
basically the same for different altitudes. I wish I had a good aircraft
performance handbook to confirm this.



That is incorrect! A classic problem in sophomore aero engineering is to
determine the maximum altitude at which an aircraft will fly,
simplifying the problem by assuming turbosupercharging to allow constant
power and discounting compressibility effects, given its stall IAS and
lift/drag curves.

At very high altitudes a plane will fly very fast at low IAS (min porew
required speed/alpha.

The power = speed*thrust is valid and is a basic tenet of aero
engineering.
 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
AOPA Stall/Spin Study -- Stowell's Review (8,000 words) Rich Stowell Aerobatics 28 January 2nd 09 02:26 PM
Hey! What fun!! Let's let them kill ourselves!!! [email protected] Naval Aviation 2 December 17th 04 09:45 PM
USAF = US Amphetamine Fools RT Military Aviation 104 September 25th 03 03:17 PM
#1 Jet of World War II Christopher Military Aviation 203 September 1st 03 03:04 AM
Change in TAS with constant Power and increasing altitude. Big John Home Built 6 July 13th 03 03:29 PM


All times are GMT +1. The time now is 04:03 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright ©2004-2025 AviationBanter.
The comments are property of their posters.