A aviation & planes forum. AviationBanter

If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below.

Go Back   Home » AviationBanter forum » rec.aviation newsgroups » Home Built
Site Map Home Register Authors List Search Today's Posts Mark Forums Read Web Partners

Texas Parasol Plans...



 
 
Thread Tools Display Modes
  #61  
Old February 28th 06, 03:50 PM posted to rec.aviation.homebuilt
external usenet poster
 
Posts: n/a
Default Texas Parasol Plans...

Cla

Bearing strength is for the Connecting Points of all those items you
mentioned. And the engineer stopped the test before complete failure
from what I read.

Excessive deflection is not a failure mode unless the engineer states it
is out of spec. And again, what was the sandbag testing weight at which
the testing was stopped? And again, excessive deflection where? In the
skins? In the Spars? in the struts?

You stated:
**
"No- Gary built a wing according to plans and sandbag tested it under
an engineer's supervision. The engineer stopped the loading before
failure because of excessive deflection IIRC."
**

And I have a set of plans, and I recall seeing the sleeves being called
out in the manual. And I don't see where aluminum skins are in the
plans. Again, deflection where?

"And sleaves in the spars by your own admission. Which are NOT in the
plans."

See wing plan D-WING3. It clearly shows what to do on the wing as for
the sleeve inserts to reinforce the connecting points, wing to cabane,
and strut to wing.

Look, this aircraft flies, in it's designed weight class, it has worked
for many years. The designer flies it. There are many copies flying, and
the death rate is not "significant" considering what happened in the
accident reports.

As you said, Clare, you are not an engineer. And you don't have current
validated DATA to back you up. I have stated instances of you being
incorrect in your assumptions. And in one of the instances, given you
the reference for corrections of your statements.

We are done. No response is necessary or wanted. This will be an agree
to disagree situation and no further contact is warranted.

Curtis Scholl
  #62  
Old February 28th 06, 10:02 PM posted to rec.aviation.homebuilt
external usenet poster
 
Posts: n/a
Default Texas Parasol Plans...

I've never liked powered ultralights that use the US part 103 definition of
ultralight. The FAA limited the empty weight to far too light a weight.
They could have added a hundred pounds to the empty weight and kept the
other limitations as they are. This would have produced a real viable
airplane class. As it is, the structures are designed without a lot of
redundancy. In the airplane in question here, the design is fine when it's
new but if there's much hangar rash on the leading edge of the wing the load
that the wing can take is greatly reduced.

I read all of the screaming and shouting about this plane's wing and I
finally decided to take a quick and dirty look at the stresses on the front
spar. I choose the front spar arguing that it's going to take most of the
loads anyway. Using a single spar unravels a knotty little problem of
resolving the reactions from the fore and aft lift struts and the two flying
wires. This was only a quick look after all. I just wanted to see if the
wing was in the ball park. Please understand that the real airplane needs
both the fore and aft spars and the fore and aft lift struts in order to
react to the wings chordwise torsion. For convenience, I used a level
spanwise wing loading. This is a conservative approach. We speak of
conservative and non-conservative. A conservative error is one which leads
to an over designed structure. A non-conservative error is one which leads
to an inadequate structure.

I used the drawings that are available on the web. They include the spar
inserts. I have a slight problem with these inserts. Since they aren't a
tight fit, its possible for the edge of the insert to cause a stress riser
on the inside of the spar tube. It's something to keep an eye on.

With my quick and dirty assumptions, I found that the spar would yield at
4.4 g's at 600 pounds gross weight. That is looking at bend moment stresses
only. A betters analysis would raise that number. This includes the
inserts. Without the inserts the spar yield at 2.3 g's at 600 pounds and
2.8 g's at 500 pounds.

Per MIL-HDBK-5 the tensile yield strength 6061-T6 tubing is 35K PSI

Rich


  #63  
Old March 1st 06, 01:12 AM posted to rec.aviation.homebuilt
external usenet poster
 
Posts: n/a
Default Texas Parasol Plans...

On Tue, 28 Feb 2006 09:50:32 -0500, Curtis Scholl
wrote:

Cla

Bearing strength is for the Connecting Points of all those items you
mentioned. And the engineer stopped the test before complete failure
from what I read.

Excessive deflection is not a failure mode unless the engineer states it
is out of spec. And again, what was the sandbag testing weight at which
the testing was stopped? And again, excessive deflection where? In the
skins? In the Spars? in the struts?


The wing was tested to 2 G's at 600 lb gross. At that point the spars
were ready to fail if I recall correctly.

You stated:
**
"No- Gary built a wing according to plans and sandbag tested it under
an engineer's supervision. The engineer stopped the loading before
failure because of excessive deflection IIRC."
**

And I have a set of plans, and I recall seeing the sleeves being called
out in the manual. And I don't see where aluminum skins are in the
plans. Again, deflection where?


The wing was tested with NO ALUMINUM SKINS. There are doublers at the
arttach points in the plans, but the spars are not doubled between the
root and the struts, which is where the spar is not up to the job from
what I gathered. I'll be talking to Gary tomorrow

"And sleaves in the spars by your own admission. Which are NOT in the
plans."

See wing plan D-WING3. It clearly shows what to do on the wing as for
the sleeve inserts to reinforce the connecting points, wing to cabane,
and strut to wing.

Look, this aircraft flies, in it's designed weight class, it has worked
for many years. The designer flies it. There are many copies flying, and
the death rate is not "significant" considering what happened in the
accident reports.

As you said, Clare, you are not an engineer. And you don't have current
validated DATA to back you up. I have stated instances of you being
incorrect in your assumptions. And in one of the instances, given you
the reference for corrections of your statements.

We are done. No response is necessary or wanted. This will be an agree
to disagree situation and no further contact is warranted.

Curtis Scholl


*** Free account sponsored by SecureIX.com ***
*** Encrypt your Internet usage with a free VPN account from http://www.SecureIX.com ***
  #64  
Old March 1st 06, 01:34 AM posted to rec.aviation.homebuilt
external usenet poster
 
Posts: n/a
Default Texas Parasol Plans...

Earlier, Richard Isakson wrote:

With my quick and dirty assumptions, I found that the spar would yield at
4.4 g's at 600 pounds gross weight. That is looking at bend moment stresses
only. A betters analysis would raise that number. This includes the
inserts. Without the inserts the spar yield at 2.3 g's at 600 pounds and
2.8 g's at 500 pounds.


Interesting. When I run the moment of inertia for 2" tubing of .058"
wall, I get 0.1667 in^4. Using that number and a yield strength of 35
ksi I get a yield moment of 5833 in/lbs. Do those numbers agree with
yours? Of course, those figures disregard cripling or buckling, which
I've not seen mentioned in this thread.

I suspect that this whole thing will come down to a somewhat subjective
matter of distributions and deflections. The distribution of loads
between the forward and aft spars will make a big difference, and I
think that the wing deflection will start to look scary before the spar
tubes reach yield. But those are just more non-engineer's guesses, and
there's been plenty too much of those already.

Taking this out on a tangent, one thing about little airplanes like
this that I don't understand is why so many of them use tubular spars.
It seems to me that you can get so much better strength/weight and
stiffness/weight using a built-up I-beam or C-section spar. Yeah, it's
a bit more trouble. But the result is either better strength and
stiffness for the same weight, or the same strength for less weight.
But again, that's just my non-engineer wing developer perspective.

Thanks, and best regards to all

Bob K.
http://www.hpaircraft.com/hp-24

  #65  
Old March 1st 06, 04:31 AM posted to rec.aviation.homebuilt
external usenet poster
 
Posts: n/a
Default Texas Parasol Plans...

"Bob Kuykendall" wrote ...

Interesting. When I run the moment of inertia for 2" tubing of .058"
wall, I get 0.1667 in^4. Using that number and a yield strength of 35
ksi I get a yield moment of 5833 in/lbs. Do those numbers agree with
yours? Of course, those figures disregard cripling or buckling, which
I've not seen mentioned in this thread.


For the spar alone those numbers are right and result in the poor spar
performance without the inserts. The maximum bending moment happens at the
strut attach point. This is where the insert sits and that increases the
moment of inertia to 0.3155. This results in the improved load handling
ability.

In the interest of laziness, I didn't look at spar buckling nor did I look
at negative loading. There is a potential for column buckling of the spar
between the root and the strut attach point. As the wing is lifted, the
strut is placed in tension. This places the inboard portion of the spar in
compression. The combination of the compression load and the lift load
could potenially cause buckling. Maybe I'll look at that sometime.

I suspect that this whole thing will come down to a somewhat subjective
matter of distributions and deflections. The distribution of loads
between the forward and aft spars will make a big difference, and I
think that the wing deflection will start to look scary before the spar
tubes reach yield. But those are just more non-engineer's guesses, and
there's been plenty too much of those already.


Reading what little has been said about the load testing, I suspect there's
a problem in the way the wing was held. It almost sounds like they didn't
have the rear lift strut attached

Taking this out on a tangent, one thing about little airplanes like
this that I don't understand is why so many of them use tubular spars.
It seems to me that you can get so much better strength/weight and
stiffness/weight using a built-up I-beam or C-section spar. Yeah, it's
a bit more trouble. But the result is either better strength and
stiffness for the same weight, or the same strength for less weight.
But again, that's just my non-engineer wing developer perspective.


I think it's to keep the labor costs down. You might ask Chuck.

Rich


  #66  
Old March 1st 06, 06:24 AM posted to rec.aviation.homebuilt
external usenet poster
 
Posts: n/a
Default Texas Parasol Plans...

("Richard Isakson" wrote)
[snip]
I've never liked powered ultralights that use the US part 103 definition
of ultralight. The FAA limited the empty weight to far too light a
weight. They could have added a hundred pounds to the empty weight and
kept the other limitations as they are. This would have produced a real
viable airplane class.



Agreed, almost.

350 lbs would have been great (without floats).

Low stall number is fine, but let's remove the speed limit on the upper end.
If it weighs X and stalls at Y, carries one person and (8g) gallons of
fuel ...who cares about its top-end speed!


Montblack
Hell ...I'M not 103 legal !!! :-)

  #67  
Old March 1st 06, 07:14 AM posted to rec.aviation.homebuilt
external usenet poster
 
Posts: n/a
Default Texas Parasol Plans...

On Tue, 28 Feb 2006 19:31:30 -0800, "Richard Isakson"
wrote:

"Bob Kuykendall" wrote ...

Interesting. When I run the moment of inertia for 2" tubing of .058"
wall, I get 0.1667 in^4. Using that number and a yield strength of 35
ksi I get a yield moment of 5833 in/lbs. Do those numbers agree with
yours? Of course, those figures disregard cripling or buckling, which
I've not seen mentioned in this thread.


For the spar alone those numbers are right and result in the poor spar
performance without the inserts. The maximum bending moment happens at the
strut attach point. This is where the insert sits and that increases the
moment of inertia to 0.3155. This results in the improved load handling
ability.

In the interest of laziness, I didn't look at spar buckling nor did I look
at negative loading. There is a potential for column buckling of the spar
between the root and the strut attach point. As the wing is lifted, the
strut is placed in tension. This places the inboard portion of the spar in
compression. The combination of the compression load and the lift load
could potenially cause buckling. Maybe I'll look at that sometime.

I suspect that this whole thing will come down to a somewhat subjective
matter of distributions and deflections. The distribution of loads
between the forward and aft spars will make a big difference, and I
think that the wing deflection will start to look scary before the spar
tubes reach yield. But those are just more non-engineer's guesses, and
there's been plenty too much of those already.


Reading what little has been said about the load testing, I suspect there's
a problem in the way the wing was held. It almost sounds like they didn't
have the rear lift strut attached


It WAS attatched. It was attatched as if it was on the plane but
upside down.

Taking this out on a tangent, one thing about little airplanes like
this that I don't understand is why so many of them use tubular spars.
It seems to me that you can get so much better strength/weight and
stiffness/weight using a built-up I-beam or C-section spar. Yeah, it's
a bit more trouble. But the result is either better strength and
stiffness for the same weight, or the same strength for less weight.
But again, that's just my non-engineer wing developer perspective.


I think it's to keep the labor costs down. You might ask Chuck.

Rich


*** Free account sponsored by SecureIX.com ***
*** Encrypt your Internet usage with a free VPN account from http://www.SecureIX.com ***
  #68  
Old March 1st 06, 01:04 PM posted to rec.aviation.homebuilt
external usenet poster
 
Posts: n/a
Default Texas Parasol Plans...

Richard Isakson wrote:

In the interest of laziness, I didn't look at spar buckling


Without the jury struts, IIRC, it cripples long before anything else fails.

Deflection at the jury strut attach point to the strut , during the load
test was, 2 or 2.5 inches when really loaded down.

hth

Rob
  #69  
Old March 1st 06, 02:00 PM posted to rec.aviation.homebuilt
external usenet poster
 
Posts: n/a
Default Texas Parasol Plans...

"Montblack" wrote in message
...
("Richard Isakson" wrote)
[snip]
I've never liked powered ultralights that use the US part 103 definition
of ultralight. The FAA limited the empty weight to far too light a
weight. They could have added a hundred pounds to the empty weight and
kept the other limitations as they are. This would have produced a real
viable airplane class.



Agreed, almost.

350 lbs would have been great (without floats).

Low stall number is fine, but let's remove the speed limit on the upper

end.
If it weighs X and stalls at Y, carries one person and (8g) gallons of
fuel ...who cares about its top-end speed!


Montblack
Hell ...I'M not 103 legal !!! :-)

I'm not sure that the subject is worth discussing further at this late date.
But, since we are--the stall speed number is definitely *not* fine!

The problem with the unreasonably low stall speed is that very modest
surface gusts can easily upset an ultralight while taxiing; or worse yet,
while taking off or landing.

350 lbs, one seat, and the speeds now authorized for LSA would have
*dramatically* improved safety with only very modest training--although any
maximum speed of at least 80 Kts would have worked.

Peter

Flagellation of a deceased equine is unsatisfying!


  #70  
Old March 1st 06, 06:28 PM posted to rec.aviation.homebuilt
external usenet poster
 
Posts: n/a
Default Texas Parasol Plans...


Curtis Scholl wrote:
Cla

Bearing strength is for the Connecting Points of all those items you
mentioned. And the engineer stopped the test before complete failure
from what I read.

Excessive deflection is not a failure mode unless the engineer states it
is out of spec. And again, what was the sandbag testing weight at which
the testing was stopped? And again, excessive deflection where? In the
skins? In the Spars? in the struts?


I disagree. Excessive deflection is a failure mode if it has
sufficient
adverse impact on function or safety, without regard to whether or
not any particular engineer realized it and said so.

That is more a criticism of the wording you used, than it is of the
implied question--How do we know the deflection was excessive?

(And what was it that deflected?)

--

FF

 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Richard Lamb and the Texas Parasol Plans ...and Sirius Aviation Richard Lamb Home Built 12 August 9th 05 08:00 PM
want to trade 601 plans for 701 plans [email protected] Home Built 0 January 27th 05 08:50 PM
bush rules! Be Kind Military Aviation 53 February 14th 04 05:26 PM
Texas Soars into Aviation History A Piloting 7 December 17th 03 03:09 AM
good book about prisoners of war Jim Atkins Military Aviation 16 August 1st 03 10:18 AM


All times are GMT +1. The time now is 09:46 AM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 AviationBanter.
The comments are property of their posters.