A aviation & planes forum. AviationBanter

If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below.

Go Back   Home » AviationBanter forum » rec.aviation newsgroups » Soaring
Site Map Home Register Authors List Search Today's Posts Mark Forums Read Web Partners

ASW 20 SPIN CHARACTERISTICS



 
 
Thread Tools Display Modes
Prev Previous Post   Next Post Next
  #24  
Old July 18th 04, 08:45 PM
Eric Greenwell
external usenet poster
 
Posts: n/a
Default

Martin Gregorie wrote:


I've not played with calibrated AoA indicators. If you have, what AoA
was reached at the stall? I'm curious.


I haven't used calibrated ones either, so I don't know.


I think our modern airfoils have very little separation at minimum sink,
and certainly far aft of the 60% point. Instead of "separation", perhaps
you mean the transition from laminar flow to turbulent flow? That does
occur somewhere around the 60% point (maybe 70% or so) on modern airfoils.


Depends on the surface texture and Re number: the turbulent transition
is just behind the hi-point with a paper covered surface and Re =
50,000. I'd guess the separation point was about at the aileron hinge
line on a Discus 1 - otherwise why put the turbulator there? Its job
is to increase the boundary layer energy by forcing a transition from
laminar to turbulent and hence causing separation to be delayed.
Without measuring the wing, that must be in the 80% ballpark.


I was talking about the separation on the top surface at high AOA
during a "stall situation". I now realize you were talking about laminar
flow separation on the bottom surface, which isn't related to the stall
situation.

For the modern laminar airfoils, the transition (from laminar flow to
turbulent flow on the bottom of the airfoil) is at least 80% or more. On
my ASH 26 E, the turbulators are on the flaps and ailerons at about 95%.

The transition from laminar flow to turbulent flow on the top of the
airfoil is sooner, perhaps in the 60%-80% range. There is rarely a
laminar flow separation, though the Speed Astir is a well-known example.

--
Change "netto" to "net" to email me directly

Eric Greenwell
Washington State
USA

 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
AOPA Stall/Spin Study -- Stowell's Review (8,000 words) Rich Stowell Aerobatics 28 January 2nd 09 02:26 PM
Spin Training JJ Sinclair Soaring 6 February 16th 04 04:49 PM
spin characteristics of new racers Andy Durbin Soaring 14 January 31st 04 06:05 AM
Cessna 150 Price Outlook Charles Talleyrand Owning 80 October 16th 03 02:18 PM
AOPA Stall/Spin Study -- Stowell's Review (8,000 words) Rich Stowell Piloting 25 September 11th 03 01:27 PM


All times are GMT +1. The time now is 10:11 AM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 AviationBanter.
The comments are property of their posters.