A aviation & planes forum. AviationBanter

If this is your first visit, be sure to check out the FAQ by clicking the link above. You may have to register before you can post: click the register link above to proceed. To start viewing messages, select the forum that you want to visit from the selection below.

Go Back   Home » AviationBanter forum » rec.aviation newsgroups » Owning
Site Map Home Register Authors List Search Today's Posts Mark Forums Read Web Partners

turbo stc?



 
 
Thread Tools Display Modes
  #1  
Old September 30th 04, 05:26 AM
The Weiss Family
external usenet poster
 
Posts: n/a
Default turbo stc?

Has anyone heard of either a turbo or supercharger STC for an IO-360?
In particular, an IO-360-A2B?

It seems that there would be a HUGE market for a turbo upgrade.

Adam
PP-ASEL


  #2  
Old September 30th 04, 03:24 PM
Nathan Young
external usenet poster
 
Posts: n/a
Default

On Wed, 29 Sep 2004 21:26:30 -0700, "The Weiss Family"
wrote:

Has anyone heard of either a turbo or supercharger STC for an IO-360?
In particular, an IO-360-A2B?

It seems that there would be a HUGE market for a turbo upgrade.


Is an IO-360 a Lyc or a Continental?

I'm not sure about STCs, but Continental makes the TSIO-360 (Seneca
II,III,IV,V) which is turbocharged... You might be able to swap
engines, or use it as a starting point.

-Nathan

  #3  
Old September 30th 04, 06:28 PM
external usenet poster
 
Posts: n/a
Default


On 29-Sep-2004, "The Weiss Family" wrote:

Has anyone heard of either a turbo or supercharger STC for an IO-360?
In particular, an IO-360-A2B?



I believe that STCs are certified for applicability to specific airplane
models rather than engines (hence the name "supplemental type certificate"
-- airplanes have type certificates, engines, while certified, do not).

I also believe that the Lyc. IO-360-A2B is most commonly used in the Beech
Musketeer Super and Sierra, but there may be other apps as well. I have not
heard of any turbo STCs for thee airplanes.

One IO-360-powered model that DOES have a turbo STC available is the C-177RG
(Cardinal RG). Tornado Alley Turbo offers that one.

--
-Elliott Drucker
  #4  
Old October 1st 04, 04:01 AM
The Weiss Family
external usenet poster
 
Posts: n/a
Default

Let me restate my question:

Why haven't more companies sought to get STC's for turbocharger/supercharger
upgrades?
Is it THAT difficult to get an STC?

It seems to me that every red-blooded pilot would love a reaonably priced
turbo upgrade (in other words, the market demand is there). Automotive
turbochargers/superchargers are extremely inexpensive (by aviation
standards), so it is reasonable to assume that they could be built and
priced relatively cheaply (compared to an engine upgrade, if one even
exists).
So, why can't I easily find these upgrades?

Adam

"The Weiss Family" wrote in message
...
Has anyone heard of either a turbo or supercharger STC for an IO-360?
In particular, an IO-360-A2B?

It seems that there would be a HUGE market for a turbo upgrade.

Adam
PP-ASEL




  #5  
Old October 1st 04, 05:59 AM
external usenet poster
 
Posts: n/a
Default

The Weiss Family wrote:
Let me restate my question:


Why haven't more companies sought to get STC's for turbocharger/supercharger
upgrades?
Is it THAT difficult to get an STC?


Yes, because a STC is by airplane not by engine.

You are trying to apply common sense to government regulations.

--
Jim Pennino

Remove -spam-sux to reply.
  #6  
Old October 1st 04, 03:46 PM
external usenet poster
 
Posts: n/a
Default

The Weiss Family wrote:
: Why haven't more companies sought to get STC's for turbocharger/supercharger
: upgrades?
: Is it THAT difficult to get an STC?
Yes... A tremendous about of paperwork, expensive certified engineering,
flight testing, and of course insurance. Once you're done with all that, you have
*one* engine/airframe combination that's applicable. Put the same engine in a
different airframe, and you have to do it all over again. (Well, maybe not all of it,
but a lot of it).

: It seems to me that every red-blooded pilot would love a reaonably priced
: turbo upgrade (in other words, the market demand is there). Automotive
: turbochargers/superchargers are extremely inexpensive (by aviation
: standards), so it is reasonable to assume that they could be built and
: priced relatively cheaply (compared to an engine upgrade, if one even
: exists).
: So, why can't I easily find these upgrades?

Read answer to previous question. The actual cost of the turbo is almost
completely irrelevent. Most aircraft engine technology is based solidly in the
1940's. The engine itself is a 4/6 cylinder lawnmower. Airplane turbos and
automotive turbos are the same technology and only differentiate in price by volume
and liability. A few things are actually more exotic technologies (inconel exhaust
valves, cylinder coatings, etc) by production automotive standards, but most things
are primitive by comparison. Turbos, ignition, fuel injection, cooling, avionics,
etc... all primitive.

The market for "cheap automotive" conversions is there, alive, and well in the
experimental category. Certified aircraft are by definition too expensive to innovate
due to certification and liability costs.

Sad, but true.

-Cory

--

************************************************** ***********************
* Cory Papenfuss *
* Electrical Engineering candidate Ph.D. graduate student *
* Virginia Polytechnic Institute and State University *
************************************************** ***********************

  #7  
Old October 1st 04, 04:02 PM
Dave S
external usenet poster
 
Posts: n/a
Default

A few data points that may help... or not.. in answering your question.
I have no specific expertise in this area from a practical standpoint.
My point of reference is the research I have been, and currently am
doing to utilize a Mazda 13B 2nd generation Turbo II rotary engine in a
Velocity Fixed gear application. The engine is without a turbo core at
the moment and will have a custom turbo sized for the intended operating
range of the engine.

1) If the normally aspirated aircraft engine is being converted to
turboCHARGED versus turboNORMALIZED, then you are probably exceeding the
rated power of the powerplant.

To a purist, turbo-normalization is simply turbocharging the intake
system to no more than sea-level pressure. This offers no benefit on the
ground but offers sea level power up to altitude. Since this offers
little benefit to the auto-street rodders, this term is not common in
the street crowd.

Turbocharging in the traditional sense involves applying many psi over
ambient.. I've read that aviation applications may use 45" on some of
the TSIO prefixed engines.. that comes out to about 22-23 PSIA (PSI
absolute). Some of the street rodders are running 30-40-50 PSI of boost.
This type of power output can dramatically increase wear and decrease
durability of the engine. Some of the guys who drag race with 60 PSI end
up rebuilding after each or every other race. Also, horsepower
production is DIRECTLY related to fuel consumption. Increasing the power
output will increase the fuel flow. In a smaller airframe that only
carries, say, 50 gallons, you might end up producing power that would
drain your tanks in 2.5 hours rather than 4-5.. The increase in speed
will NOT make up for the fuel burn.. drag increases exponentially, so
for a linear increase in fuel burn/HP you will NOT see a corresponding
linear increase in speed. One thing that WILL help is using surplus HP
to get to altitude, then producing sea level power values at high
altitude to take advantage of higher true air speeds.

2) Car turbo assemblies in general are simpler. Car turbos on car
engines have an internal wastegate assembly that is referenced to
ambient pressure, usually through a diaphragm/spring/pushrod setup. In a
car this is fine.. that majority of street rodders ply their trade at
less than 5000 ft MSL. Turbo's work their magic through values called
pressure ratio's.. If the wastegate springs open at a PR of 3, at sea
level that would be 45 PSI. At about 25,000 feet, a PR of 3 would be 15
PSI of boost. Those numbers are rough, and for example only but lead to
the next point.

Aviation turbo's have one of 3 types of wastegate assemblies: a) a
fixed, nonadjustable wastegate (pilot has to watch his MP's carefully
down low) b) a manual wastegate (a second throttle, if you will, and the
pilot has to pay attention to it on descent and down low) c) an
automatic wastegate (the more pilot-proof of the three). The automatic
wastegate manages the boost output of the turbo up to the point the
wastegate is fully closed, at which point, max attainable power
decreases with altitude. I considered such a beast for the
auto-conversion I was working on, until I researched what was out there.
The wastegates appear to be fairly complex mechanically, and if I
remember right may require engine oil as a hydraulic fluid.

A further level of complexity is the need for a scavenger pump in most
aviation turbo setups. In auto engines, the turbo gets its oil feed
under pressure then it passively drains by gravity into the sump through
a height differential of several inches. In the aviation turbo setup on
a horizontally opposed engine you typically have the turbo's oil outflow
BELOW the oil sump, which requires a scavenging oil pump to return this
vital turbo cooling oil from the turbo to the sump.

3) You wont really want to use high compression cylinders on any turbo'd
engine. The margins of safety between normal operation and detonation
can disappear quickly, resulting in an expensive overhaul. Car engines
DO run turbo's on autogas, but the stock arrangements tend to have boost
limiters that keep the boost under 2.0. They also use premium autogas to
slow the combustion flame front. I am not privy to the common auto
engine piston compression ratios, but in the mazda engines, the turbo's
CR is less than ANY of the normally aspirated motors, to avoid
detonation. This isn't so much a problem RIGHT NOW, but keep in mind
that all the huss and fuss about 100LL goin away... is going to hit the
turbocharged aviation (true aviation engines, Lycs and Conts) engines
the hardest.. Those high powered turbo engines use the majority of the
high octane fuel, and they have no effective replacement WHEN 100LL goes
bye bye. The options are to reduce available power to avoid detonation,
or change the powerplant altogether.

4) While you dont have to be a rocket scientist, it does help to be
meticulous about engine management when using higher HP/Turbo engines.
Allowing adequate warmup and cooldown periods. Every redblooded pilot
would have to pay good attention to operating the powerplant properly to
improve longevity. I dont think turbocharged engines are a sound idea in
rental fleets (and I am a renter pilot at this time). There is the
notion that turboed aircraft if not managed properly can easily become
hangar queens/maintenance hogs.

If you look at the Continental chart at
http://www.tcmlink.com/producthighlights/ENGTBL.PDF) you can see that
with the exception of the liquid cooled engines, many of the TBO's are
just as low, or lower than normally aspirated engines, and also you can
see the bit about compression ratio I spoke of earlier.

Finally, cost may be artificially inflated, but Tornado Alley Turbo's,
the guys with bolt-on turbonormalized STC's... are charging 25-30 grand
for the priveledge of using their product. There has to be a significant
R&D hurdle there, coupled with small market, coupled with the
traditional aviation premium on product costs.

If anyone gives a rip about the experimental end of it, the engine I am
rebuilding now, I have a Mazda 13B torn down into its individual
components and am ready to reassemble once I purchase the seals/gaskets.
The stock engine will develop around 160-180 hp. We are guessing 250 hp
with a mild turbocharging of 23psi/45"hg, and using a turbosmart
(www.turbosmart.au) brand Eboost "absolute pressure controller", a $500
electronic/servo car version of aviation's automatic wastegates. Neat
thing is, its programmable, so you can set multiple levels of boost (not
truly needed, but may be useful). The utility behind that is opening the
wastegate fully on descent so that the turbo gets unloaded while you are
a ways out, cooling it off, and allowing it to be even cooler at
shutdown and extending bearing/turbo life.

We will be using a Real World Solutions PSRU (www.rotaryaviation.com)
and also an EFI from them. Turbo wise, well that remains to be seen, but
I have been crunching numbers (mass air flow, rpm, etc) to size a turbo
properly (plotting these values on compressor maps) for the airflow this
engine should generate. I think at the time being we are going to be in
something like a Garrett T04Super60. I say "think" because I have yet to
get good data on what the engine REALLY flows with regards to airflow.
The rotary engine's theory of operation is slightly different from a
piston's, with regards to stroke volume/power strokes/rpm so I have
based it on one value and been told of another, which fudges up all the
numbers. I am going to see how some of the flying guys are doing (we
have one of the rotary guys who blew two stock mazda turbos, and now has
a T04-V1 and waiting to fly again)

Dave


The Weiss Family wrote:

Let me restate my question:

Why haven't more companies sought to get STC's for turbocharger/supercharger
upgrades?
Is it THAT difficult to get an STC?

It seems to me that every red-blooded pilot would love a reaonably priced
turbo upgrade (in other words, the market demand is there). Automotive
turbochargers/superchargers are extremely inexpensive (by aviation
standards), so it is reasonable to assume that they could be built and
priced relatively cheaply (compared to an engine upgrade, if one even
exists).
So, why can't I easily find these upgrades?

Adam

"The Weiss Family" wrote in message
...

Has anyone heard of either a turbo or supercharger STC for an IO-360?
In particular, an IO-360-A2B?

It seems that there would be a HUGE market for a turbo upgrade.

Adam
PP-ASEL






  #8  
Old October 1st 04, 07:23 PM
Nigel T Peart
external usenet poster
 
Posts: n/a
Default

There is a US company that has an STC for a belt-driven supercharger for the
C182.
Can't find the URL right now, but I recall it costing about $17k.
Much better option than a turbo, no pressure/leak related issues.
Gets my vote.


"Dave S" wrote in message
.net...
A few data points that may help... or not.. in answering your question.
I have no specific expertise in this area from a practical standpoint.
My point of reference is the research I have been, and currently am
doing to utilize a Mazda 13B 2nd generation Turbo II rotary engine in a
Velocity Fixed gear application. The engine is without a turbo core at
the moment and will have a custom turbo sized for the intended operating
range of the engine.

1) If the normally aspirated aircraft engine is being converted to
turboCHARGED versus turboNORMALIZED, then you are probably exceeding the
rated power of the powerplant.

To a purist, turbo-normalization is simply turbocharging the intake
system to no more than sea-level pressure. This offers no benefit on the
ground but offers sea level power up to altitude. Since this offers
little benefit to the auto-street rodders, this term is not common in
the street crowd.

Turbocharging in the traditional sense involves applying many psi over
ambient.. I've read that aviation applications may use 45" on some of
the TSIO prefixed engines.. that comes out to about 22-23 PSIA (PSI
absolute). Some of the street rodders are running 30-40-50 PSI of boost.
This type of power output can dramatically increase wear and decrease
durability of the engine. Some of the guys who drag race with 60 PSI end
up rebuilding after each or every other race. Also, horsepower
production is DIRECTLY related to fuel consumption. Increasing the power
output will increase the fuel flow. In a smaller airframe that only
carries, say, 50 gallons, you might end up producing power that would
drain your tanks in 2.5 hours rather than 4-5.. The increase in speed
will NOT make up for the fuel burn.. drag increases exponentially, so
for a linear increase in fuel burn/HP you will NOT see a corresponding
linear increase in speed. One thing that WILL help is using surplus HP
to get to altitude, then producing sea level power values at high
altitude to take advantage of higher true air speeds.

2) Car turbo assemblies in general are simpler. Car turbos on car
engines have an internal wastegate assembly that is referenced to
ambient pressure, usually through a diaphragm/spring/pushrod setup. In a
car this is fine.. that majority of street rodders ply their trade at
less than 5000 ft MSL. Turbo's work their magic through values called
pressure ratio's.. If the wastegate springs open at a PR of 3, at sea
level that would be 45 PSI. At about 25,000 feet, a PR of 3 would be 15
PSI of boost. Those numbers are rough, and for example only but lead to
the next point.

Aviation turbo's have one of 3 types of wastegate assemblies: a) a
fixed, nonadjustable wastegate (pilot has to watch his MP's carefully
down low) b) a manual wastegate (a second throttle, if you will, and the
pilot has to pay attention to it on descent and down low) c) an
automatic wastegate (the more pilot-proof of the three). The automatic
wastegate manages the boost output of the turbo up to the point the
wastegate is fully closed, at which point, max attainable power
decreases with altitude. I considered such a beast for the
auto-conversion I was working on, until I researched what was out there.
The wastegates appear to be fairly complex mechanically, and if I
remember right may require engine oil as a hydraulic fluid.

A further level of complexity is the need for a scavenger pump in most
aviation turbo setups. In auto engines, the turbo gets its oil feed
under pressure then it passively drains by gravity into the sump through
a height differential of several inches. In the aviation turbo setup on
a horizontally opposed engine you typically have the turbo's oil outflow
BELOW the oil sump, which requires a scavenging oil pump to return this
vital turbo cooling oil from the turbo to the sump.

3) You wont really want to use high compression cylinders on any turbo'd
engine. The margins of safety between normal operation and detonation
can disappear quickly, resulting in an expensive overhaul. Car engines
DO run turbo's on autogas, but the stock arrangements tend to have boost
limiters that keep the boost under 2.0. They also use premium autogas to
slow the combustion flame front. I am not privy to the common auto
engine piston compression ratios, but in the mazda engines, the turbo's
CR is less than ANY of the normally aspirated motors, to avoid
detonation. This isn't so much a problem RIGHT NOW, but keep in mind
that all the huss and fuss about 100LL goin away... is going to hit the
turbocharged aviation (true aviation engines, Lycs and Conts) engines
the hardest.. Those high powered turbo engines use the majority of the
high octane fuel, and they have no effective replacement WHEN 100LL goes
bye bye. The options are to reduce available power to avoid detonation,
or change the powerplant altogether.

4) While you dont have to be a rocket scientist, it does help to be
meticulous about engine management when using higher HP/Turbo engines.
Allowing adequate warmup and cooldown periods. Every redblooded pilot
would have to pay good attention to operating the powerplant properly to
improve longevity. I dont think turbocharged engines are a sound idea in
rental fleets (and I am a renter pilot at this time). There is the
notion that turboed aircraft if not managed properly can easily become
hangar queens/maintenance hogs.

If you look at the Continental chart at
http://www.tcmlink.com/producthighlights/ENGTBL.PDF) you can see that
with the exception of the liquid cooled engines, many of the TBO's are
just as low, or lower than normally aspirated engines, and also you can
see the bit about compression ratio I spoke of earlier.

Finally, cost may be artificially inflated, but Tornado Alley Turbo's,
the guys with bolt-on turbonormalized STC's... are charging 25-30 grand
for the priveledge of using their product. There has to be a significant
R&D hurdle there, coupled with small market, coupled with the
traditional aviation premium on product costs.

If anyone gives a rip about the experimental end of it, the engine I am
rebuilding now, I have a Mazda 13B torn down into its individual
components and am ready to reassemble once I purchase the seals/gaskets.
The stock engine will develop around 160-180 hp. We are guessing 250 hp
with a mild turbocharging of 23psi/45"hg, and using a turbosmart
(www.turbosmart.au) brand Eboost "absolute pressure controller", a $500
electronic/servo car version of aviation's automatic wastegates. Neat
thing is, its programmable, so you can set multiple levels of boost (not
truly needed, but may be useful). The utility behind that is opening the
wastegate fully on descent so that the turbo gets unloaded while you are
a ways out, cooling it off, and allowing it to be even cooler at
shutdown and extending bearing/turbo life.

We will be using a Real World Solutions PSRU (www.rotaryaviation.com)
and also an EFI from them. Turbo wise, well that remains to be seen, but
I have been crunching numbers (mass air flow, rpm, etc) to size a turbo
properly (plotting these values on compressor maps) for the airflow this
engine should generate. I think at the time being we are going to be in
something like a Garrett T04Super60. I say "think" because I have yet to
get good data on what the engine REALLY flows with regards to airflow.
The rotary engine's theory of operation is slightly different from a
piston's, with regards to stroke volume/power strokes/rpm so I have
based it on one value and been told of another, which fudges up all the
numbers. I am going to see how some of the flying guys are doing (we
have one of the rotary guys who blew two stock mazda turbos, and now has
a T04-V1 and waiting to fly again)

Dave


The Weiss Family wrote:

Let me restate my question:

Why haven't more companies sought to get STC's for

turbocharger/supercharger
upgrades?
Is it THAT difficult to get an STC?

It seems to me that every red-blooded pilot would love a reaonably

priced
turbo upgrade (in other words, the market demand is there). Automotive
turbochargers/superchargers are extremely inexpensive (by aviation
standards), so it is reasonable to assume that they could be built and
priced relatively cheaply (compared to an engine upgrade, if one even
exists).
So, why can't I easily find these upgrades?

Adam

"The Weiss Family" wrote in message
...

Has anyone heard of either a turbo or supercharger STC for an IO-360?
In particular, an IO-360-A2B?

It seems that there would be a HUGE market for a turbo upgrade.

Adam
PP-ASEL








  #9  
Old October 1st 04, 08:27 PM
Aaron Coolidge
external usenet poster
 
Posts: n/a
Default

The Weiss Family wrote:
: Has anyone heard of either a turbo or supercharger STC for an IO-360?
: In particular, an IO-360-A2B?

: It seems that there would be a HUGE market for a turbo upgrade.

STC's are for a specific airframe/engine combo. M20turbos has a
turbonormalizer for Lycoming IO-360 Mooneys (IO-360-A3B6D). They're
at http://www.m-20turbos.com/turbo_kits.htm but I don't know how much
longer they'll be around.
--
Aaron Coolidge

  #10  
Old October 2nd 04, 03:11 AM
Kyler Laird
external usenet poster
 
Posts: n/a
Default

Dave S writes:

To a purist, turbo-normalization is simply turbocharging the intake
system to no more than sea-level pressure. This offers no benefit on the
ground


Let's meet at Leadville for a discussion about this.

(My STCed turbonormalizers have been a royal pain in my wallet but I
sure wouldn't go without them.)

--kyler
 




Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

vB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
Turbo prop AT-6/SNJ? frank may Military Aviation 11 September 5th 04 02:51 PM
First Time Buyer - High Time Turbo Arrow [email protected] Owning 21 July 6th 04 07:30 PM
Turbo Alternator Wyatt Emmerich Instrument Flight Rules 5 January 19th 04 02:35 PM
Turbo Normalised Bonanza F33A Geoff Semler Owning 4 December 30th 03 07:03 PM
High Altitude operations (Turbo charge???) Andre Home Built 68 July 11th 03 11:59 PM


All times are GMT +1. The time now is 06:36 PM.


Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 AviationBanter.
The comments are property of their posters.